Sobolev and Hölder regularity results for some singular nonhomogeneous quasilinear problems
نویسندگان
چکیده
This article deals with the study of following singular quasilinear equation: $$\begin{aligned} (P) \left\{ \ -\Delta _{p}u _{q}u = f(x) u^{-\delta },\; u>0 \text { in }\; \Omega ; \; u=0 on } \partial , \right. \end{aligned}$$ where $$\Omega $$ is a bounded domain $${\mathbb {R}}^N$$ $$C^2$$ boundary $$\partial $$1< q< p<\infty $$\delta >0$$ and $$f\in L^\infty _{loc}(\Omega )$$ non-negative function which behaves like $$\text {dist}(x,\partial )^{-\beta },$$ $$\beta \ge 0$$ near . We prove existence weak solution $$W^{1,p}_{loc}(\Omega its behaviour for <p$$ Consequently, we obtain optimal Sobolev regularity solutions. By establishing comparison principle, uniqueness case <2-\frac{1}{p}$$ Subsequently, p$$ non-existence result. Moreover, Hölder gradient to more general class equations involving nonlinearity as well lower order terms (see (1.6)). result completely new independent interest. In addition this, minimal solutions +\delta 1$$ that has not been fully answered former contributions even p-Laplace operators.
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz-Sobolev space setting
We study the boundary value problem −div(log(1 + |∇u|)|∇u|∇u) = f(u) in Ω, u = 0 on ∂Ω, where Ω is a bounded domain in R with smooth boundary. We distinguish the cases where either f(u) = −λ|u|u+|u|u or f(u) = λ|u|u−|u|u, with p, q > 1 , p+q < min{N, r}, and r < (Np−N+p)/(N−p). In the first case we show the existence of infinitely many weak solutions for any λ > 0. In the second case we prove t...
متن کاملQuasilinear parabolic problems via maximal regularity
We use maximal Lp regularity to study quasilinear parabolic evolution equations. In contrast to all previous work we only assume that the nonlinearities are defined on the space in which the solution is sought for. It is shown that there exists a unique maximal solution depending continuously on all data, and criteria for global existence are given as well. These general results possess numerou...
متن کاملDirectional Hölder Metric Regularity
This paper sheds new light on regularity of multifunctions through various characterizations of directional Hölder/Lipschitz metric regularity, which are based on the concepts of slope and coderivative. By using these characterizations, we show that directional Hölder/Lipschitz metric regularity is stable, when the multifunction under consideration is perturbed suitably. Applications of directi...
متن کاملAn Orlicz-sobolev Space Setting for Quasilinear Elliptic Problems
In this paper we give two existence theorems for a class of elliptic problems in an Orlicz-Sobolev space setting concerning both the sublinear and the superlinear case with Neumann boundary conditions. We use the classical critical point theory with the Cerami (PS)-condition.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Calculus of Variations and Partial Differential Equations
سال: 2021
ISSN: ['0944-2669', '1432-0835']
DOI: https://doi.org/10.1007/s00526-021-01994-8